Оглавление

Введение
1.Оценка технического уровня и качества конструкции нового изделия 4
2. Расчет трудоемкости ОКР и планирование ТПП нового изделия 9
3. Расчет численности специалистов, необходимых для выполнения проекта
4. Построение календарного ленточного графика ТПП нового изделия 15
5. Прогнозирование технико-экономических показателей проектируемого
изделия
5.1. Расчет полной себестоимости изделия
5.2. Определение величины прибыли и лимитной цены изделия
5.3. Расчет капитальных вложений в НИОКР и освоение производств 19
6 Экономический эффект от производства изделия
7. Формирование сводных показателей оценки экономической
целесообразности конструкции
Библиографический список

Введение

Научно-технические нововведения являются существенным стимулом развития общества и определяют экономический успех предприятий их реализующих.

В связи с ограничением финансовых ресурсов и конкуренции в условиях рыночных отношений, крайне важно на ранних стадиях конструкторской проработки оценить техническую и экономическую целесообразность проектов и своевременно прекратить финансирование неперспективных вариантов.

Эффективность принятых решений зависит от качества прогнозирования таких показателей как объем спроса на разрабатываемое изделие, размеры финансирования на разработку и развертывание производства, срок реализации проекта, величина прибыли и др.

1.Оценка технического уровня и качества конструкции нового изделия

Анализ технического уровня проектируемого изделия. Он предусматривает рассмотрение технических проблем, связанных с разработкой проекта, оценкой уровня качества и технического совершенства проектируемой продукции.

Сравнительный анализ проектируемого изделия на техническом уровне является первым этапом оценки и отбора лучших вариантов. Оценка выполняется в следующей последовательности:

А) составляется перечень показателей технического уровня конструкции и их количественная оценка.

Выбор перечня показателей для конкретной конструкции производится студентом с учетом назначения, области применения и условий эксплуатации изделия. В этот перечень включаются три основных группы показателей: показатели назначения и тактико-технические данные изделия; конструкторские (специальные) показатели, влияющие на функционирование изделия; общие конструкторские (технические) показатели, влияющие на условия производства. Состав показателей должен быть согласован с преподавателем (не менее шести показателей).

Исходные данные:

№ варианта	9
Изделие - конкурент	2
Проектируемое изделие	10

Технико-экономические показатели изделий.

Параметр							Моде	ли из	дели	Я					
Параметр	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.Мощность л.с	5	8	15	12	6	8	8	9	12	6	12	15	11	12	7
2.Макс. скорость, км/ч	4	5	8	4	10	6	8	6	10	4	6	10	5	6	10
3.Кол-во операций	15	18	25	25	22	20	16	19	22	15	24	21	20	20	25
4.Ресурс работы, ч	2000	2500	1500	1600	2000	2500	3000	2400	1500	1800	1800	2000	1600	1800	2000
5.Надежность, отк./ч	0,008	0,005	0,006	0,005	0,01	0,007	0,006	0,007	0,008	0,006	0,01	0,01	0,008	0,008	0,006
6.Масса, кг	80	80	100	150	140	85	100	105	110	120	85	160	140	100	95
7.Коэффициент унификации	0,2	0,25	0,3	0,1	0,15	0,2	0,28	0,21	0,22	0,31	0,32	0,18	0,14	0,2	0,3
8.Коэффициент стандартизации	0,1	0,11	0,12	0,13	0,15	0,18	0,2	0,2	0,1	0,1	0,15	0,15	0,1	0,1	0,2
9.Цена, тыс. руб	12	12	30	25	14	14	12	10	30	15	30	22	18	20	20
10. Амортизация, руб./ч	65	48	185	175	70	56	60	42	185	85	166	110	112	110	100
11 .Затраты на топливо, руб./ч	12,5	20	30	24	15	20	20	22,5	24	15	24	30	21	24	17,5
12.Техническое и ремонтное обслуживание, тыс.руб./ч	3,1	2,4	6,2	6,0	3,5	2,8	3,0	2,1	6,2	4,1	6,0	5,0	5,1	5,0	4,9

Б) оценивается весомость (значимость) показателя.

Оценка весомости показателей изделия осуществляется на основе экспертных оценок. Наиболее простым методом индивидуальной экспертизы, используемой для оценки весомости показателей, является метод попарных сравнений. Результаты экспертизы представляются в виде матрицы (форма 1), в которой на пересечении строки и столбца фиксируются индексы

тех показателей, которые являются наиболее важными в оценке качества изделия при попарном их сравнении.

Форма 1. Матрица попарного сравнения показателей і, ј

				№ пара	метров				1_	
i j	1	2	3	4	5	6	7	8	k _j	\mathbf{r}_{j}
1	1	2	3	1	1	1	1	1	6	0,167
2	2	2	3	4	2	2	2	2	6	0,167
3	3	3	3	4	3	3	3	3	7	0.195
4	1	4	4	4	4	4	4	4	7	0,195
5	1	2	3	4	5	5	7	5	3	0,083
6	1	2	3	4	5	6	6	6	3	0,083
7	1	2	3	4	7	6	7	7	3	0,083
8	1	2	3	4	5	6	7	→ 8	1	0,027
				$\sum k_j$					= 36	1

Оценка значимости показателей осуществляется по формуле:

$$r_i = k_i / \sum_i k_i$$

где k_{i-} количество предпочтений i-го параметра при попарном их сравнении;

$$\sum_{i=1}^{n} r_i = 1$$

где n - количество параметров в наборе.

в) рассчитывается комплексный показатель уровня качества.

В основе оценки лежит сравнение выбранного набора показателей базового и проектного вариантов с эталонными значениями, в качестве которых могут использоваться наилучшие (идеальные) значения. Расчет выполняется по формулам:

безразмерный (относительный) показатель качества по і-му параметру:

$$q_i = p_i^{\Pi}/p_i^{\mathfrak{I}} \tag{1}$$

$$q_i = p_i^{\mathfrak{s}}/p_i^{\mathfrak{n}} \tag{2}$$

где p_i^{π} , $p_i^{\mathfrak{z}}$ количественные значения і-го показателя соответственно сопоставляемых вариантов и эталонного значения.

Формула (1) применяется для показателей, при увеличении которых увеличивается качество изделия;

Формула (2.) - в противном случае.

комплексный показатель технического уровня и качества конструкции;

$$W = \sum_{i=1}^{n} q_i \cdot r_i$$

коэффициент изменения качества:

$$k_u = W^{\Pi}/W^{\Xi}$$

где W^{Π} , W^{Ξ} - комплексные показатели качества проектного и базового варианта. Расчет выполняется в табличной форме 2:

За эталон принимаем лучшие значения параметров по конкурентам.

Форма 2. Оценка технической целесообразности конструкции по вариантам (П – проектный, Б – аналог)

	# 1 AF										
n ⁿ .	D3	r.	q_{j}		r _j *	q_i					
Рj	That is	l j	Π	Б	П	Б					
46	6	0,167	1	1	0,167	0,167					
10	1	0.167	2.50	1	0.419	0,167					
10	+	0,107	2,30	1	0,416	0,107					
	•										
22	15	0.195	1,47	1	0,287	0.195					
)											
2000	2000	0 105	1	1	0.105	0,195					
2000	2000	0,173	1	1	0,173	0,173					
0.01	0.006	0.083	0.6	1	0.117	0,083					
0,01	0,000	0,003	0,0	1	0.117	0,003					
140	80	0,083	0,57	1	0,047	0,083					
0.15	0.21	0.083	0.48	1	0.040	0,083					
0,13	0,31	0,083	0,40	1	0,040	0,083					
0.15	0.1	0.027	1 5	1	0.041	0,027					
0,13	0,1	0,027	1,3	1	0,041	0,027					
					$W_{\Pi}=1,312$	$W_{\Pi}=1$					
к _и 1,312											
	22 2000 0,01	6 6 10 4 22 15 2000 2000 0,01 0,006 140 80 0,15 0,31 0,15 0,1	6 6 0,167 10 4 0,167 22 15 0.195 2000 2000 0,195 0,01 0,006 0,083 140 80 0,083 0,15 0,31 0,083 0,15 0,1 0,027	р ј р ј гј П 6 0,167 1 10 4 0,167 2,50 22 15 0.195 1,47 2000 2000 0,195 1 0,01 0,006 0,083 0,6 140 80 0,083 0,57 0,15 0,31 0,083 0,48 0,15 0,1 0,027 1,5	p j p j rj Π Б 6 6 0,167 1 1 10 4 0,167 2,50 1 22 15 0.195 1,47 1 2000 2000 0,195 1 1 0,01 0,006 0,083 0,6 1 140 80 0,083 0,57 1 0,15 0,31 0,083 0,48 1 0,15 0,1 0,027 1,5 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Проект считается технически целесообразным, если $k_u \ge 1$.

г) по материалам формы 2 составляется секторограмма (многоугольник) технического уровня (рис. 1).

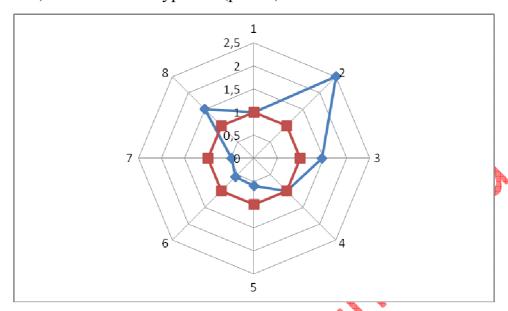


Рисунок 1. Многоугольник технического уровня изделий Вывод: исследуемое изделие конкурентоспособно в сравнении с изделием-конкурентом по техническим параметрам.

2. Расчет трудоемкости ОКР и планирование ТПП нового изделия

Трудовые затраты играют важную роль в разработке научнотехнических проектов, поэтому планирование в основном базируется на использовании нормативов трудоемкости, определенных различными методами. Для научно-технических проектов наибольшее распространение получил метод типовых этапов (работ).

Использование этого метода связано с тем, что, несмотря на индивидуальный характер НИР и ОКР большинство составляющих их элементов повторяется в том или ином сочетании (в ОКР - 70-90 %, в НИР 30-50 %).

Расчет выполняется в следующей последовательности:

1) оценивается трудоемкость базового этапа проектирования. В качестве базового этапа принимают тот этап, по которому имеется достаточно информации для проведения расчета тем или иным способом. в котором Например, балльного метода, ПО отдельным факторам определяется суммарный показатель объема работ в единицах сложности помощью удельного норматива переводится (баллах), а затем с трудоемкость. Оценка факторов выполняется дифференцированно главным узлам и видам работ.

Выделено два вида работ: расчетно-аналитические и чертежно-графические для которых порядок расчета объемных показателей различен. Показатель объема работ первой группы по узлу 1 определяется по формуле

$$Q_1^I = Q_H^b \cdot K_1$$

где Q_H^I - нормативное значение объема работ первой группы в баллах, выбираемое в зависимости от группы новизны узла:

 K_1 - корректирующий коэффициент, учитывающий влияние сложности узла по числу кинематических пар (табл.11).

Показатель объема работ второй группы по узлу 1 определяется по формуле

$$Q_1^{II} = Q_H^{II} \cdot K_2 \cdot K_3 \cdot K_4$$

где Q_H^{II} - нормативное значение объема работ второй группы в баллах, выбираемое s зависимости от количества оригинальных деталей в узле;

 K_2 , K_3 , K_4 - корректирующие коэффициенты, учитывающие влияние группы сложности по внешним контурам, насыщенности узла сложными деталями (табл.11)..

Суммарная трудоемкость ОКР определяется по формуле:

$$T_{\text{okp}} = t_H \cdot K_0 \left(\sum_{\mathbf{1}} Q_{\mathbf{1}}^{I} + \sum_{\mathbf{1}} Q_{\mathbf{1}}^{II} \right)$$

где $t_{\rm H}$ - норматив удельной трудоемкости, чел. дн. (балл.). Норматив устанавливается на основе статистических данных по результатам проектирования аналогичных изделий ($t_{\rm H}$ =25 дн. равно 1 баллу);

 K_{o} - коэффициент, учитывающий сложность и степень автоматизации управления объектом в целом (табл.9).

Форма З. Расчет трудоемкости

Группы			Объемы	работ по	группам і	з баллах						
работ	расчетн	но-аналити	ические	чертежно-графические								
Узлы /	Q_H^I	k_1	Q_1^{\prime}	Q_H^{II}	k_2	k_3	$k_{\mathtt{A}}$	$Q_1^{\prime\prime}$				
показатели	v.n	1.		- CH	4	3	-	_				
Узел 2	3	1,6	4,8	35	1,2	1,13	1,1	52,2				
Узел 6	3	2,4	7,2	52	1,6	1,13	1,2	112,8				
Узел 8	3	1,2	3,6	10	1,1	1,05	1,05	12,1				
25	\sum_{1}^{N}	$Q_1^I = 15$ $Q_1^I + \sum_{i=1}^{n} Q_1^I + \sum_{i=1}^{n} Q_1^I = 15$			$\sum_{\mathbf{i}}$	$Q_1^{II} = 17$ $192,7$	7,1					
	балл, чел иент слож		мы k_0		48	25 1 317,5 (3854	40)					

2) оценивается трудоемкость технологической подготовки нового изделия для заданного типа производства

$$T_{\text{TXIIII}} = T_{\text{OKP}} \cdot \left(\frac{100 - d_{\text{OKP}}}{d_{\text{OKP}}}\right),$$

где $d_{\rm OKP}$ - удельный вес трудоемкости ОКР в технической подготовке изделия для данного типа производства (табл.12), %;

3) оценивается трудоемкость этапов и работ на основе данных о трудоемкости отдельных стадий и типовой структуре распределения трудозатрат

$$T_j = T \cdot d_j / 100; \quad t_{jk} = T_j \cdot d_{jk} / 100,$$

где T, T_j - трудоемкость стадии и ее j-го этапа;

 d_{j} , d_{jk} - удельный вес трудоемкости соответственно ј-го этапа и k-й работы, % (табл. 6).

Форма 4. Трудоемкость разработки проекта производства изделия в разрезе этапов и работ, н-ч

Перечень этапов	В целом		По отдельным	видам работ	
	по этапу	исследоват.	конструкт.	технолог.	производ.
		Конст	рукторская под	готовка	
Разработка					
ТЗ и ТП	1927	790,07			
ЭП	5781	1264,112	519,3265	8,6715	1849,92
ТΠ	11562	2370,21	1483,79	8,6715	2774,88
Рабочий проект	9635	1264,112	2374,064	17,343	1
Изготовление опытн. образца	5781	158,014	593,516	34,686	4933,12
Испытания изделия	1541,6	316,028	148,379	8,6715	308,32
Доработка документации	2312,4	316,028	593,516		
ОТОГО	38540	15801,4	14837,9	1734,3	6166,4
		Техно	логическая под	готовка	
Разработка технологии:			10		
маршрутной	8513,8			8513,8	
пооперационной	5991,2			5991,2	
Проектирование приспособлений	5675,9	50	5675,9		
режущего	946,0		946,0		
мерительного инструмента	946,0		946,0		
Изготовление приспособлений	4414,6				4414,6
режущего	2837,9				2837,9
мерительного инструмента	2207,3				2207,3
ИТОГО	31532,7		7567,8	14505,0	9459,8

3. Расчет численности специалистов, необходимых для выполнения проекта

Научно-исследовательский персонал, участвующий в разработке проекта в зависимости от выполняемых функций, подразделяется на исследователей, конструкторов, технологов, рабочих опытного (экспериментального) производства.

Расчет выполняется в следующей последовательности:

- 1) определяется трудоемкость этапов проекта и трудоемкость работ по отдельным категориям исполнителей (см. форму 4);
- 2) выбираются значения нормативной длительности цикла выполнения основных стадий подготовки производства (конструкторской $T_{O\!RP}^{HII}$) из табл. 13 на основе суммарной трудоемкости ОКР; технологической ($T_{I\!XIIII}^{HII}$) из табл. 14 в соответствии с заданным типом производства);
- 3) распределяется нормативная длительность цикла стадий подготовки по отдельным этапам пропорционально трудоемкости их выполнения по формуле:

$$T_j^{\scriptscriptstyle H} = T_{\scriptscriptstyle okp(TXIIII)}^{\scriptscriptstyle Hl} \cdot d_j / k_{\scriptscriptstyle Nap} 100$$

где $T_i^{\scriptscriptstyle{H}}$ - длительность выполнения j-го этапа мес.;

 d_j - удельный вес трудоемкости j-го этапа по данной стадии (см. табл. 12), %;

 $k_{max} = 0,3 \dots 0,7$ - коэффициент параллельности выполнения этапов и работ;

4) определяется потребная численность исполнителей по каждому этапу и отдельным категориям:

$$Y_{jk} = T_{jk} / (F^{\scriptscriptstyle M} \cdot T_{j}^{\scriptscriptstyle H} \cdot k_{\scriptscriptstyle \mathfrak{G}R}),$$

где T_{jk} - трудоемкость j-го этапа по k-му виду работ, ч;

 \mathbf{F}^{M} - месячный фонд времени одного исполнителя ,ч ($\mathbf{F}^{\text{M}} = 165$ ч);

 k_{sh} - коэффициент выполнения норм. $k_{\mathit{sh}} = 1,0$

Форма 5. Расчет потребной численности специалистов по категориям

				Coc	тав перо	сонала			
2	Цикл	исследо	ват.	констр	укт.	техно	логи	рабоч	
Этап	, mec.	T_{jk}	Ч _{jk}	T_{jk}	Ч _{jk}	T_{jk}	Ч _{jk}	T_{jk}	Ч _{jk}
Техническое задание, приложение эскизный проект	1,1	2054,2	10,3	519,3	2,6	8,67	0,04	1849,9	9,3
Технический проект	3,4	2370,21	3,8	1483,79	2,4	8,67	0,01	2774,8 8	4,5
Рабочий проект	2,9	1264,11 2	2,4	2374,06 4	4,5	17,34	0,03	>	
Опытный образец, испытания корректировка документации	2,9	790,07	1,5	1335,6	2,5	43,4	0,08	5241,4	10,0
ИТОГО по конструкторско й подготовке	8		18		12		1,0		24
Разработка технологически х процессов	6,6	<i>)</i> (1450 5	12,1		
Проектирование ос-настки и инструмента	2,6	8		7567,8	16,0 4				
Изготовление оснастки и инструмента	2	7						9459,8	26,1
ИТОГО по технологическо й подготовке	10				16		12		26

Примечание. Дробная часть расчетного значения численности персонала суммируется по стадиям. Полученная величина округляется до целого значения. Допускаемая перегрузка на одного исполнителя не должна превышать 10%.

4. Построение календарного ленточного графика ТПП нового изделия

Форма 6. Ленточный график проведения ТПП

l l	Этапы и идии ТПП		ёмкость и нч.	Длитель ность цикла,]	pad	рик	выг	ЮЛН	ени	я ра	бот	по	меся	нцам	1
				`mec ´	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2
	Т3, ЭП	13,5	7708	1,1									4	. 4		*
	ТП	20,2	11562	3,4						4		. 1	T	*		
ОКР	РΠ	16,9	9635	2,9						4						
Γ	Опытны й образец, испытан ия корректи ровка документ ации	16,9	9635	2,9	* *		TO A									
	ектирован ие хнологии	14,9	8513,8	6,6												
Про	ектирован ие и отовление снастки	17,7	10090,5	4,6												
	384	8	X													

5. Прогнозирование технико-экономических показателей проектируемого изделия

В системе технико-экономических показателей, на основе которых принимается решение об экономической целесообразности проекта, ведущая роль принадлежит себестоимости изделия. Необходимость определения себестоимости возникает на стадиях проектирования, когда ещё не полностью разработана конструкторская и отсутствует технологическая используются различные документация. В ЭТИХ случаях методы себестоимости, учете техникопрогнозирования основанные эксплуатационных показателей.

5.1. Расчет полной себестоимости изделия.

Основными прямыми статьями, определяющими себестоимость конструкции, являются:

- затраты на основные материалы;
- затраты на комплектующие покупные изделия;
- заработная плата производственных рабочих (ОПР).

Расчет выполняется в следующей последовательности:

Рассчитываются затраты на основные материалы в разрезе узлов

$$M = \sum_{i} \left[q_{ij}^{\mathsf{q}} \cdot \left(1 + \frac{K_{OT}}{100} \right) \Pi_{j}^{\mathsf{M}} - q_{ij}^{\mathsf{q}} \cdot \frac{K_{OT}}{100} \cdot \Pi_{j}^{\mathsf{O}} \right] \cdot K_{\mathsf{T3}}$$

где; $q_{ij}^{\mathbf{q}}$ - расход ј материала на узел і в соответствии с чертежом, кг (табл. 4);

 $\coprod_{j}^{N} \coprod_{j}^{o}$ - прейскурантная цена ј материала и отходов, руб;

 K_{OT} - средний процент реализуемых отходов (табл. 5);

 K_{T3} - коэффициент транспортно-заготовительных расходов (1,05).

Узел	Материалы	Норма	Цена	Сумма		вратные от		Общая			
		расхода			норма	цена	сумма	сумма			
1	2	3	4	5	6	7	8	9			
2	Черные металлы Цветные металлы Пластмасса	9 6	100 1000	900 6000	1,8 0,9	20 300	36 270	864 5730			
6	Черные металлы Цветные металлы Пластмасса	6 2 1	100 1000 1050	600 2000 1050	1,2 0,3 0,1	20 300 100	24 90 10	576 1910 1040			
8	Черные металлы Цветные металлы Пластмасса	7 3 2	100 1000 1050	700 3000 2050	1,4 0,45 0,2	20 300 100	280 135 20	420 2865 2030			
Итого по изделию 1											
Сучетом 16											

2) Рассчитываются расходы на заработную плату (ЗП) ОПР.

На стадии конструкторской подготовки производства (КПП) расчет ЗП базируется на показателе удельной трудоемкости 1 кг массы конструкции изделия аналога. Расчет выполняется в табличной форме 8.

Расчет зарплаты ОПР.

Форма 8.

Показатель	Формула расчета	Обозначение	Расчет зарплаты ОПР
		$t_E^{\nu\delta}$ - удельная трудоем-	
		кость 1 кг массы	
T		конструкции базового	
Трудоемкость изделия	$T_{uc} = t_E^{v\partial} \cdot G$	изделия, час (табл.6)	1,6*120=192
подолия		G- масса	
		проектируемой	
		конструкции, кг	
Трудоемкость		N^{Γ} - прогнозируемый	
годового	$T^{\Gamma} = T_u \cdot N^{\Gamma}$	объем выпуска, шт.	192*60000=11520000
выпуска		(табл.1)	
		F_p^{∂} -годовой	
Потребное	T^{Γ}	действительный фонд	
количество ОПР	$R = \frac{1}{F^{\partial}}$	времени рабочего	11520000/1840=6260,9
	- p	F_p^{∂} =1840 н.ч.	
Годовой фонд		3 средняя месячная	
ЗП основной и	$3_0^{\Gamma} = 12 \cdot R \cdot 3_0^{epu}$	ЗП рабочего на пред-	12*6260,9*9000=676177200руб.
дополнительной	N N	приятии	
Основная ЗП	ou of ant		(7(177200/0000 11200 6 5
ОПР на одно	30 = 30/1W.		676177200/60000=11269,6руб.
изделие			

3) рассчитывается величина полной себестоимости изделия

$$S^{\pi} = \left[M + 3_O^{\text{M}} \left(1 + \frac{H_{\text{L}} + H_{\text{OB}} + H_{\text{CH}}}{100}\right)\right] \left(1 + \frac{H_{\text{BH}}}{100}\right), =$$

16206,75+11269,6*(1+2,95)*(1+0,354)=76480pyő.

где $H_{\text{ц}}, H_{\text{оз}}, H_{\text{вн}}$ - нормативы соответственно цеховых, общезаводских и внепроизводственных расходов, % (табл.6).

 $H_{\text{сн}^-}$ норматив отчислений на социальные нужды (35,4%).

5.2. Определение величины прибыли и лимитной цены изделия.

Величина прибыли нового и базового изделия

$$\Pi^{\mathrm{H}} = \frac{P_{\mathrm{\Pi}} \cdot S^{\mathrm{\Pi}}}{100}; \quad \Pi^{\mathrm{E}} = \Pi^{\mathrm{H}} / \mathrm{K}_{\mathrm{HK}}$$

 $\Pi^{\text{H}} = 0,3*76480=22944$ руб. $\Pi^{\text{G}} = 22944/1,08=21244$ руб.

где P_{π} - плановый уровень рентабельности нового изделия, %;

 $\mathbf{K}_{\mathbf{MK}}$ - коэффициент изменения качества нового изделия.

Лимитная цена нового изделия определяется по формуле

$$\coprod_{\Pi} = S^{\Pi} + \Pi^{H} = 76480 + 22944 = 99424 \text{ py6}.$$

5.3. Расчет капитальных вложений в НИОКР и освоение производств

Расчет предпроизводственных затрат осуществляется в Ф10.

Форма 10. Расчет предпроизводственных затрат

Показатели	Формула расчета	Обозначение	Расчет п	0
Показатели	Формула расчета	оозначение	ОКР	ТХПП
1	2	3	4	5
Соотношение трудоемкости стадий, %	700	t _i ^{yд}	55	45
Трудоемкость в н/час	$T_i = rac{T_{ m okp}}{T_{ m okp}^{y \mathcal{A}}} \cdot t_i^{y \mathcal{A}}$	Т _{кпп} трудоемкость опытно- конструкторских работ (ОКР)	13248,1	10839,4
Длительность цикла ТПП, дн.	_	$T_i^{u_i}$	6	6
Потребная численность исполнителей по стадиям	$R_i = rac{T_i}{F_{ m p}^{ m \tiny M} \cdot T_i^{ m \tiny LL} \cdot k_{ m \tiny BH}}$	$F_{ m p}^{ m M}$ - месячный фонд времени исполнителя $k_{ m BH}$ -коэффициент выполнения норм (1.0)	14	11

Средняя 3П исполнителя		$3_i^{\scriptscriptstyle{ ext{M}}}$	9000	9000
Общий фонд 3П по исполнителям	$3_i = R_i \cdot 3_i^{\text{\tiny ME}} \cdot T_t^{\text{\tiny MI}} \cdot \left(1 + \frac{H_{\text{\tiny CM}}}{100}\right)$		1023624	804276
Полные затраты на разработку проекта	$K_{ m mms} = rac{3}{K_{ m sm}^{ m y}}$	$K_{\tt B\Pi}^{\tt y}$ - удельный вес ЗП в общей структуре себестоимости $K_{\tt B\Pi}^{\tt y} = 0.35\text{-}0.4$	2924640	2297931

Капитальные вложения в производственные фонды завода

$$K_{\text{n}} = K_{\text{o}} + K_{\text{o}}$$
, = 5010969600+5010969600*0,3=6514260480py6.

где $K_{\mathfrak{o}\mathfrak{o}}$ - капитальные вложения в оборудование и оснастку;

 K_{oc} - капитальные вложения в оборотные средства.

$$K_{\text{об}} = \mathbf{U}_{\pi} \cdot N^{\text{r}} \cdot K_{\text{об}}^{\text{уд}}, = 99424*60000*0,84=5010969600$$
руб.

где $K_{\text{об}}^{\text{уд}}$ - норматив удельных капитальных вложений в оборудование на один рубль реализованной продукции (по базовому варианту; табл.6).

6 Экономический эффект от производства изделия

$$\mathbf{G}^{r} = [(\Pi^{H} - \Pi^{E}) - \mathbf{E}_{H} \cdot \Delta K_{\Pi}^{Y}] \cdot N^{r}, = ((22944-21244)-$$

0,1*7900)*60000=54600000руб.

где $E_{\rm H}$ =0,1 - нормативный коэффициент экономической эффективности капиталовложений;

 ΔK_{Π}^{y} - дополнительные удельные капитальные вложения на производство новых изделий.

$$\Delta K_{\rm rr}^{\rm y} = \frac{K_{\rm n\phi}^{\rm H} - K_{\rm n\phi}^{\rm B}}{N^{\rm r}} = (6514260480 - 6040248460)/60000 = 7900 \text{py} \delta.$$

Срок окупаемости капитальных вложений

$$T_{\text{oc}} = \frac{K_{\text{ппв}} + \left(K_{\text{пф}}^{\text{ц}} - K_{\text{пф}}^{\text{В}}\right)}{\left(\Pi^{\text{H}} - \Pi^{\text{E}}\right) \cdot N^{\text{F}}} \le T_{\text{ok}}^{\text{H}}, = (5222571 + (6514260480 - 66480$$

6040248460)/102000000=4,7

где $T_{\text{ок}}^{\text{н}}$ - нормативный срок окупаемости капитальных вложений.

7. Формирование сводных показателей оценки экономической целесообразности конструкции

Форма 9

Наименование / показатели		Варианты		
паименование / показа	атели	Проектный	Базовый	
Прогнозируемый объем в	выпуска	60000	60000	
Капитальные вложения, тыс. руб.	K_{nnz}	5222,571	(12	
	$K_{n\phi}$	6514260,480	6040248,460	
	Σ	6519483,051	6040248,460	
Текущие издержки на производство изделия, руб.	M	16206,75	16206,75	
	3	11269,6	11269,6	
	Sn	76480	76480	
Прибыль на единицу изде	лия, руб.	22944	21244	
Лимитная цена, ру	б.	99424	_	
Экономический эффект,	ыс. руб.	54600	_	
Срок возврата капитальных	вложений	4,7	<u>-</u>	

Расчеты показывают, что коммерческое производство нового изделия целесообразно. Экономический эффект на вложенный капитал и срок окупаемости капитальных вложений в проект удовлетворяют нормативным ограничениям.

Библиографический список

Основная литература:

- 1. Раздорожный А.А. Организация производства и управление предприятием/ Учебник для вузов. М.: Изд./Экзамен/, 2009.
- 2. Дубровин И.А. Экономика и организация производства: учеб. пособие для вузов.- М.: Дашков и К, 2007.
- 3.Туровец О.Г., Бухалков М.И, Родионов В.Б. и др. Организация производства и управление предприятием: Учебник М.: ИНФРА-М,2005
- 4.В. А. Курский, О. А. Ратников, О. А. Николаев. Экономика и организация промышленности. Методические указания для практических занятий и самостоятельной работы. Тула, ТулГУ, 2010.

Дополнительная литература:

- 5. Дубровин И.А. Экономика и организация производства: учеб. пособие для вузов.- М.: Дашков и К, 2007.
- 6.Курский В.А., Васин Л.А., Николаев О.А., Ратников О.А., Соколова С.С.Экономико-организационное и маркетинговое обоснование решений в дипломных проектах инженерного профиля; учебное пособие Тула; Издательство ТулГУ, 2005.
- 7. Антонов А.Н., Морозова Л.С. Основы современной организации производства. М.: Издательство «Дело и сервис», 2004.